Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer
نویسندگان
چکیده
BACKGROUND A multifunctional telodendrimer-based micelle system was characterized for delivery of imaging and chemotherapy agents to mouse tumor xenografts. Previous optical imaging studies demonstrated qualitatively that these classes of nanoparticles, called nanomicelles, preferentially accumulate at tumor sites in mice. The research reported herein describes the detailed quantitative imaging and biodistribution profiling of nanomicelles loaded with a cargo of paclitaxel. METHODS The telodendrimer was covalently labeled with ¹²⁵I and the nanomicelles were loaded with ¹⁴C-paclitaxel, which allowed measurement of pharmacokinetics and biodistribution in the mice using microSPECT/CT imaging and liquid scintillation counting, respectively. RESULTS The radio imaging data showed preferential accumulation of nanomicelles at the tumor site along with a slower clearance rate than paclitaxel formulated in Cremophor EL (Taxol®). Liquid scintillation counting confirmed that ¹⁴C-labeled paclitaxel sequestered in nanomicelles had increased uptake by tumor tissue and slower pharmacokinetics than Taxol. CONCLUSION Overall, the results indicate that nanomicelle-formulated paclitaxel is a potentially superior formulation compared with Taxol in terms of water solubility, pharmacokinetics, and tumor accumulation, and may be clinically useful for both tumor imaging and improved chemotherapy applications.
منابع مشابه
"OA02" peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo.
Micellar nanoparticles based on linear polyethylene glycol (PEG) block dendritic cholic acids (CA) copolymers (telodendrimers), for the targeted delivery of chemotherapeutic drugs in the treatment of cancers, are reported. The micellar nanoparticles have been decorated with a high-affinity "OA02" peptide against α-3 integrin receptor to improve the tumor-targeting specificity which is overexpre...
متن کاملTumorigenicity of Esophageal Cancer Stem Cells (ECSCs) in nude mouse xenograft model
Background and objectives: Modeling cancer in vivo is a very important tool to investigate cancer pathogenesis and molecular mechanisms involved in cancer progression. Laboratory mice are the most common animal used for rebuilding human cancer in vivo. Cancer stem cells (CSCs) are the main reason of failure in cancer therapy because of tumor relapse and metastasis. Isolation of cancer stem cell...
متن کاملCo-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment.
Carboplatin (CPT) and paclitaxel (PTX) used in combination is one of the most effective treatments for ovarian cancer. However, the traditional combination methods used to co-administrate CPT and PTX showed limited clinical efficacy due to their distinct pharmacokinetics. Although much effort has been devoted to developing nanoparticles capable of encapsulating drugs with different lipophilicit...
متن کامل99mTc-Glucarate for assessment of paclitaxel therapy in human ovarian cancer in mice
Objectives: The monitoring of cancer treatment response to chemotherapy is considered an essential strategy for follow-up of patients. The aim of this study was to evaluate the use of 99mTc-glucarate as a radiotracer for in vivo quantification and visualization of necrotic area and therapeutic effect of paclitaxel in ovarian cancer xenografted nude mice. Materials and Methods: After implantatio...
متن کاملEvaluation of the inhibitory synergic effects of the Persian Gulf brittle star extract and taxol on ovarian cancer A2780cp
Paclitaxel is a current standard chemotherapeutic drug for ovarian cancer with several side effects. Recurrences of drug resistant clones have been considered the serious problem in the failure of chemotherapy. Medicinal marine natural products have been intensively proposed as diverse chemotherapeutic agents. Therefore there is an affinity to find efficient modality to overwhelm ovarian cancer...
متن کامل